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1 Introduction

Electric power systems, acclaimed as the “supreme engineering achievement of
the 20th century”, are one of the most complex human-made systems [9]. As
an example, the U.S. power grid has approximately 170,000 miles of high-voltage
(voltage at or above 200kV) transmission lines and almost 5,000 generating units
with capacity of at least 50MW [1]. In an engineering system of such a scale and
complexity, uncertainty abounds. More specifically, uncertainties in generation,
consumption, and unexpected failures of electric equipments have to be carefully
considered in the operation of power systems. It is an amazing fact that the reli-
ability and security of power supply is held to such a high standard that flipping
on a switch and expecting the light bulbs to shine at any time has almost become
a part of the subconsciousness of the modern society. This is a great achieve-
ment, made possible by the sound engineering design and the tremendous efforts
dedicated by the electricity industry.

However, it becomes increasingly challenging to uphold such a high standard
of reliability, as the power systems around the world experience fast and funda-
mental changes. In particular, the output of generators, which traditionally has
been well predictable, is becoming more and more difficult to predict. The key
driving force behind this change is the large-scale integration of wind and solar
power generation into the power grids, both of which are highly intermittent,
correlated in time and space, and stochastic in nature [2]. At the same time, the
demand side is also becoming more and more intelligent and responsive, with the
smart grid technologies enabling electricity consumers to change their consump-
tion in real time. All of these changes have significant implications on power
systems at multiple levels.
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Figure 1 shows a picture of the major decision-making problems involved in
power systems operation. The problems are categorized from a temporal perspec-
tive into real-time operations (minute-to-minute dispatch), daily scheduling (day-
ahead commitment), midterm maintenance planning (seasonal or annual sched-
ules), and long-term investment planning for generation and transmission sys-
tems [24]. In an electricity market environment, the independent system opera-
tor (ISO) is responsible for scheduling dispatch and daily commitment, as well as
coordinating maintenance schedules between generation and transmission own-
ers [25]. The ISO would also conduct long-term planning study and make tech-
nical recommendations for generation and transmission expansion. At the same
time, all of these decision-making problems involve numerous stakeholders and
affect millions of consumers. Mathematical optimization is heavily relied upon
for reaching consistent, efficient, and optimal outcomes. It is not an exaggeration
to say that modern power systems are built upon rigorous and sound optimiza-
tion models and efficient solution algorithms.
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Figure 1: Major decision-making problems in power systems operation. The time
arrow points to the start of real-time operation. The typical decision horizon of
each problem is given under each problem [28].

Traditionally, the above decisions-making problems are solved by determinis-
tic optimization models [32]. That is, the optimization models consider a prob-
lem of fixed and known parameters. For example, in the short-term economic
dispatch and unit commitment, the generation capabilities, the exact demand at
each of the future periods, and the conditions of the transmission lines and gen-
erators are assumed to be known. The resulting solutions are therefore feasible
and optimal for the planned or forecast scenario. Such a deterministic approach
has been successful at maintaining power systems reliability and security under
the traditional conditions. However, as the uncertainties in the power systems
multiply due to the growing penetration of renewable resources, the traditional
approaches are becoming inadequate for the multi-leveled decision-making prob-
lems. The industry is actively seeking new approaches to deal with the growing
uncertainties (see e.g. [6]).

Recently, robust optimization has been developed into a rich and practical



methodology for decision-making under uncertainty [5]. In the past few years,
a flurry of research activities has introduced robust optimization into the field of
power systems [36, 15, 6, 17]. In a short amount of time, interesting models are
proposed and promising results are shown to demonstrate the power of robust
optimization in almost every category of the decision problems depicted in Fig-
ure 1. The industry has taken the lead in supporting and pursuing collaborations
with academic researchers. The present chapter aims to give a concise overview
of the recent advances in the field. The review is bound to be incomplete due to
the fast growth of this area.

This chapter first focuses on the unit commitment problem in the day-ahead
operation, which is a building block for many other decision-making problems in
power systems; then we discuss real-time and long-term planning. In particular,
Section 2 introduces the two-stage robust optimization based unit commitment
model, solution methods, and some computational results. Section 3 presents
several extensions to this fundamental model. Section 4 discusses some recent
progress on robust optimization models for real-time operation and long-term
planning. Section 5 closes the chapter with some discussions on future directions.

2 Two-stage adaptive robust optimization for security-
constrained unit commitment problem

In this section, we first present the deterministic security-constrained unit com-
mitment (SCUC) model, which is used by most of the system operators in the
day-ahead scheduling. Then, a fundamental SCUC model based on two-stage
adaptive robust optimization is discussed.

2.1 Deterministic security-constrained unit commitment

Unit commitment (UC) is a process of determining the on and off status of gen-
eration units (primarily the thermal units, 1.e., coal, nuclear, geothermal, and
natural gas power plants) and their production levels for next day operation. The
scheduling horizon is usually 24 hours or 36 hours with an hourly interval. The
on and off decision is called the unit commitment decision. The production
level is called the dispatch decision. The production of the generation units is
scheduled to meet the forecast demand in the power network, satisfying various
physical and operational constraints. To ensure a certain level of security, the
system operator usually requires the UC and dispatch solutions to be feasible for
any one failure of a generation unit and/or a transmission line. Such constraints
are called N — 1 security constraints. A typical deterministic SCUC model with



transmission security constraints is presented below [28].
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The unit commitment decisions include binary variables xl.t, u f,fvl.t, where
x! =1if generator 7 is on at time ¢, and x = 0 otherwise; #! =1 if generator 7 is
turned on from the off state at time ¢; v! =1 if generator 7 is turned off at time
t. The dispatch decision is p! of generator 7 € 4 at time ¢t € 7, where ¥ is the
set of generators, and 7 is the set of time periods in the decision horizon.

The fixed cost f'(x},un},v}) of each generator includes start-up and shut-
down costs and other fixed costs. The variable cost ¢/(p!) is usually approxi-
mated by a convex piecewise linear function of the active power output p!. The

forecast demand d_] ! is the load at bus 7, time ¢t. Constraints (1b) and (1c) rep-

resent logic relations between on and off status and the turn-on and turn-off ac-
tions. Constraints (1d) and (le) restrict the minimum up and down times for
each generator. Constraint (1f) enforces system wide energy balance in each time
period. Constraints (1g)-(1h) limit the rate of production changes over a single
period, where RU; and RD,; are limits for ramp-up and ramp-down rates when
the generator is already running, and SU; and SD, are ramping limits when gen-
erator  is just starting up and shutting down. Constraint (11) expresses the power
flow in the transmission lines as a linear function of power production and load



in the entire system, where the coefficients of the linear function, a; 1, are called
the shift factors of line /, and the index k represents the k-th contingency, i.e.,
when the line & is tripped offline, 6}, is the set of remaining lines. Constraint (1j)
represents the physical limits on the production levels of each generator.

The above SCUC model (1) is the basic formulation for a UC model. An
important aspect that is not presented in (1) is the system reserve and associated
constraints [3]. The reliability of power supply is so critical for the function of
modern society that system operators pay extremely careful attention to ensure
the system has enough generation capacity. The industry practice is to use the
so-called reserves, generation resources that are online or can be quickly brought
online to respond to any demand surge or generation outages. The system-wide
reserve requirement is usually pre-determined by certain rules, such as a percent-
age of the forecasted peak load plus the largest online generator’s capacity. Then,
the reserve levels of individual generators are co-optimized with the UC and dis-
patch decisions [8, 7, 11]. In short, reserve is an engineering way to cope with
uncertainties. In the following, we will present robust optimization based SCUC
models, which in a sense rigorously quantify uncertainties and replace or reduce
the ad-hoc reserve requirement.

2.2 Adaptive robust UC model with net load uncertainty

As discussed in Section 1, the main sources of uncertainties in the day-ahead unit
commitment include the demand uncertainty, renewable generation uncertainty,
and unexpected failures of transmission lines and generators. In this subsection,
we first present a fundamental robust optimization model that considers the un-
certainty in the net load, where the net load is demand minus renewable gener-
ation. Then, we present several generalizations. Consider the following robust
UC model [36, 15, 6, 17]:

min {c(x) + Saeagperg(lgd) b(p)} 2

st. x €EZ,

where x is the vector of commitment related decisions, p is the vector of dis-
patch variables, and d is the vector of net load in the network; 7 is a set that
describes the region of possible net load; (x,d) is the feasible region of the dis-
patch problem, defined by (1f)-(1j). More compactly, we can write it as Q(x,d) =
{p:Hp+Ed <h,Ax+Bp < g}, where the first linear inequality represents
the constraints (1f) and (11), involving the dispatch p and demand d, and the sec-
ond linear inequality represents the constraints (1g), (1h), and (1j). The set Z is
the feasible region of the commitment decisions x, which is defined by (1b)-(1e).



This formulation (2) is a two-stage fully adaptive robust optimization model.
The commitment decision x is the first-stage decision, made before the realiza-
tion of the uncertain net load d, whereas the dispatch decision p is the second-
stage decision taken to respond to each specific realization of d. That is, the
dispatch solution p(b) as a function of b fully adapts to any b. The solution
of (2) is a unit commitment decision x that is feasible, therefore robust, for any
possible realization of the uncertain net load d.

The uncertainty set 9 describes the ranges of possible net load d. We can also
impose some constraints on the total variations of the uncertainty in 2 and use
it to control the conservativeness of the robust model. The following so-called
budgeted uncertainty set is widely used in the literature. For each time ¢:
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where .47 is the set of nodes that have uncertain net load, d* = (df,i € Ny)
is the vector of uncertain net load at time ¢, dit is the nominal value of the net
load of node : at time ¢, a,?f 1s the deviation from the nominal net load, and the
interval [df — d;t ,d! + ait ] is the range of the uncertain d!. The inequality in (3)
controls the deviation of total net load from the nominal value. The parameter
A is the “budget of uncertainty”. With A? = 0, the uncertainty set 2* = {d g
is a singleton, corresponding to the nominal deterministic case. As A’ increases,
the size of the uncertainty set 2" enlarges. This means that larger total deviation
from the expected net load is considered, so that the resulting robust UC solu-
tions are more conservative and the system is protected against a higher degree of
uncertainty. With A" = N, where N is the total number of uncertain net load,
9" equals to the entire hypercube defined by the intervals for each d.

The uncertainty set in (3) is defined independently for each time period. A
budget constraint over all the time periods can also be added to limit the variation
of net loads over the entire planning horizon. The basic structure of the budgeted
uncertainty sets remain the same. In the later part, we will introduce another
type of uncertainty sets which model the dynamics of uncertainty parameters
between time periods and locations.

2.3 Solution method to solve adaptive robust model

The two-stage robust optimization model (2) is a general and fundamental model.
The complexity of solving such a model comes from two sources. One is from the



discrete nature of the first-stage decision x. The other is from the max-min struc-
ture in the second stage. The latter one is more fundamental in the sense that even
if the first-stage decision is continuous with convex region 7, the second-stage
problem can still be computationally challenging. To see this, we can reformulate
the second-stage max-min problem by the strong duality of linear optimization,
assuming linear cost functions:

maxmin{pr :Hp+Ed<h,Ax+Bp Sg}

dey p
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Notice that the objective function (4a) has a bilinear term d'ET u, and the feasi-
ble region is composed of two separate polyhedrons for (4,7) and d, respectively.
By the strong duality of linear optimization, the above procedure can also be re-
versed so that a bilinear optimization problem with two separate polyhedral fea-
sible regions can be reformulated as a max-min problem as in the second-stage of
(2). In general, this type of bilinear optimization problem is NP-hard to solve [4],
which indicates the second-stage problem of (2) is computationally challenging,
independent of the first-stage problem.

However, it is interesting to note that the optimal objective value of the max-
min problem (4) denoted as R(x) is a convex function of the first-stage decision x.
This suggests that, modulo the complexity of the second-stage problem, the over-
all two-stage problem (2) may be reasonably solvable by a Benders decomposition
type algorithm, which is developed in [6, 15, 17].

Another key property of the second-stage problem is that the worst-case net
load is always an extreme point of the uncertainty set 2. This follows from
the well-known property of bilinear optimization problems with separate poly-
hedron sets [18]. With this observation, the two-stage robust model (2) can be
re-written as

xe@lﬁp c(x)+z ®)
st.z>b'p, Vek=1,...,m
PrENx,dy,) Ve=1,....m

where (dy,...,d,,) is the set of extreme points of the polyhedron 2. The number
of extreme points may be exponential in the dimension of &, which is the case



of the budget uncertainty (3). This presents an ideal situation to apply constraint
generation on (5). Since new variables p, are also generated with the new con-
straints, such an algorithm is formally proposed in [34] with the name, column-
and-constraint generation (see also [30]). A similar procedure is also proposed in
[6] as a heuristic to speed up the Benders decomposition, where the worst-case
extreme points of 9 together with the associated dispatch constraints are added
to the first-stage problem in each iteration of the Benders algorithm. For details,
please refer to [34, 17, 6]. The recent work in [19] proposes etficient algorithms
to deal with transmission constraints in (2), which dynamically include critical
transmission lines.

2.4 Computational study

The two-stage robust SCUC model (2) with the budgeted uncertainty sets (3)
has been applied to the day-ahead scheduling of the ISO New England’s power
system [6]. Table 1 shows the comparison of average dispatch and total costs
between the two-stage robust SCUC and the current practice of deterministic
UC with reserve adjustment [6].

Two-Stage Robust Reserve Adjustment
budget | dispatch cost total cost | dispatch cost total cost
A'JYNg | (M9 (MS) (M$) (M$)
0.5 16.9195 18.6050 18.1855 19.6837
1.0 16.9650 18.6688 17.4907 18.9942

1.5 16.9815 18.7365 17.3027 18.8006
2.0 17.0297 18.7937 17.7403 19.2415
25 17.0586 18.8366 17.6567 19.1618
3.0 17.0745 18.8526 18.0804 19.5889

Table 1: The average dispatch and total costs of the two-stage robust UC and
the deterministic UC with reserve for normally distributed net load A*/4/N,; =

0.5,1,...,3 and d;? :O.ld_]'?.

From this table, we can see that both dispatch and total costs are reduced by
the two-stage robust UC model. Also it is worth noticing that the lowest average
cost is achieved at an uncertainty budget A’ = 0.5,/N,, which results in an
uncertainty set that is much smaller than the box uncertainty set of the net load
intervals in (3). The computational study also shows that the robust UC model
can significantly reduce the variability of the production cost by more than an
order of magnitude [6].



3 Extensions to two-stage robust UC models

In this section, we present several recent extensions to the two-stage robust SCUC
model (2).

3.1 Security-constrained UC with corrective actions

The UC model (1) finds a commitment and dispatch solution that is feasible for
any one transmission line contingency. This is called the N — 1 security con-
strained UC with preventive actions. A more stringent requirement is to prepare
for any loss of & transmission lines, i.e., the N — & security constrained UC.
Furthermore, a more flexible way to respond to contingencies is to allow the
commitment and dispatch solution to change, the so-called SCUC with correc-
tive actions. It is easy to see that N — k security-constrained UC with corrective
actions is a robust optimization model with decisions adaptive to contingency un-
certainties. The seminal work [27] presents such a robust UC model for SCUC
with generation contingency, i.e., any k online generators may experience unex-
pected failures in each period and remaining generators can be re-committed and
re-dispatched. A subsequent work [30] proposes an elegant robust UC model
that considers both generation and transmission line contingencies in a power
network. A similar two-stage robust UC model is proposed in [26], which con-
siders both generation and transmission contingencies and reserve scheduling.
Notice that net load uncertainty is not explicitly considered in these models.

3.2 Taming the conservativeness

The adaptive robust UC model (2) minimizes the sume of the commitment cost
and the worst-case second-stage dispatch cost. As shown in [6], the balance be-
tween the conservativeness and the robustness of the resulting UC solution can
be controlled by the budget constraints in (3). A nice discussion on the model-
ing choices of uncertainty sets and their implications on conservativeness of the
UC solutions is provided in [12]. To further tame the conservatiness, alterna-
tive objective functions are considered. For example, a regret optimization based
approach is proposed in [16], and a hybrid model minimizing the expected cost
and the worst-case cost is proposed in [35].

The two-stage minimax regret robust UC model can be presented abstractly
as min, .5 {Reg(x): Qx,d) #0,Yd € } where the regret Reg(x) of the first-

stage commitment decision x is defined as

de? | peQix,d)

Reg(x)zmax{ min {c<x>+b<p>}—Q<d>}. ©)



That is, the regret of x is the worst-case difference between the total production
cost of choosing x before knowing d (i.e., min,cq 4y {c(x)+ &(p)}) and the
total production cost Q(d) of a UC with the foresight of demand realization,
where Q(d) is defined as Q(d) = min, , {c(x)+ &(p) : x € F, p € Nx,d)}.

The inner LO min g, 4y {c(x) + b(p)} can be dualized to a maximization
problem just as we did in (4). The term —Q(d) in (6) can also be easily rewrit-
ten as a maximization problem, given Q(d) is defined by minimization problem.
Therefore, Reg(x) in (6) can be reformulated as a standard max — min problem.
The solution method developed in Section 2.3 can be applied to solve the result-
ing two-stage robust model.

3.3 From two-stage to multistage robust UC models

The two-stage robust UC model (2) ignores non-anticipativity in the dispatch,
which dictates that the dispatch decision at hour ¢ should only depend on real-
izations of uncertainty up to ¢. In a recent work [21], the authors show that
respecting the non-anticipativity condition in the dispatch process is crucial for
managing a system with restricted ramping capability, which has become a lim-
iting factor in today’s power systems with growing penetration of intermittent
generation. The paper proposes a multistage robust UC model, which utilizes
decision rules, in particular, affine policy, for the multistage dispatch process and
develops efficient cutting-plane algorithms to solve the resulting large-scale ro-
bust optimization problem. For the first time, multistage robust UC problems
can be solved for power networks of more than 2000 buses within a realistic time
framework for applications in the day-ahead electricity markets. Furthermore,
on realistic test cases, the simplified affine policy proposed in the paper performs
surprisingly well — usually within 1% of the true optimal multistage policy.

4 Robust optimization in real-time operation and long-
term planning

Robust optimization models are also proposed for the real-time dispatch and
long-term planning problems. In the following, we outline some of the recent
works in these areas.

A static robust optimization model is proposed for the look-ahead economic
dispatch problem [33], where novel statistical models for wind forecast is incor-
porated into the robust ED model. In [29], a static robust ED model is proposed
for managing system ramping capability, which is shown to outperform the re-
cent development in deterministic look-ahead ED with ramping products [23].
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In [20], a new two-stage robust optimization model with a new type of dy-
namic uncertainty sets is proposed for the multi-period dispatch problem. The
dynamic uncertainty sets for wind power incorporate linear autoregression mod-
els of wind speeds at neighboring wind farms, so that the temporal and spatial
correlations of wind speeds are captured. It is shown in [20] that the robust ED
model with dynamic uncertainty sets can pareto dominates the performance of
the robust ED model with the traditional budgeted uncertainty set (3) in both
the average and variablity of the operational costs.

The fundamental two-stage robust optimization model (2) is applied to the
real-time dispatch of automatic generation control (AGC) units in [37], where
the first-stage decision is the dispatch of normal generation units to satisfy a nom-
inal demand and then the second-stage problem dispatches automatic generation
units to respond to demand fluctuations. An affine policy based robust optimiza-
tion model is proposed for the AGC dispatching in [13], where the second-stage
dispatch decision of the AGC units assumes to be an affine function of the uncer-
tain load. as an approximation to the fully adaptive policy in (2), which makes
the second-stage problem easier to solve. Affine decision rules are also proposed
for managing reserves in the power system [31].

The two-stage robust optimization model (2) has also been applied to the
long-term transmission network expansion planning problem in [14], where the
uncertainties in renewable generation and loads are considered, and to the gener-
ation expansion planning problem in [10]. Adaptive robust models using affine
decision rules are proposed for capacity expansion planning in [22].

5 Closing Remarks

This chapter gives a brief review of some of the recent developments in apply-
ing robust optimization methodology to power systems operation and planning
under uncertainty. Many interesting directions, such as the integration of robust
models into the electricity markets, multi-stage optimization for handling sys-
tems with high penetration of wind and solar power, and long-term investment
are important questions, are open for further investigation.
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